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1 Introduction

New statistical methods grouped under the name of "machine learning" are surprisingly effective

for tasks as various as economic growth forecasting, image classification and music generation.

They do use various tools, ranging from tools of optimal transport, a field of mathematics created

by the French mathematician Gaspard Monge at the end of the 18th century, to theorems and

objects coming from the much younger fields of functional analysis, Fourier analysis, wavelets and

measure theory. To be effective, they do however often rely on massive amounts of observations:

samples need to be big - hence the name "big data" - to produce effective models. Data availability

and collection is thus a necessary condition of functional machine learning models, and has become

an economic sector in itself. However, in some special cases, useful data cannot be published or

even sold, because the data is sensitive, proprietary or private (Koenecke and Varian 2020). One

could think of Google protecting its fine granular search data (but publishing aggregates through

Google Trends), data from a clinical study that contains private information about patients, or

fiscal records that feature information that make taxpayers identifiable. In all these cases, one

might want to generate fake data that captures the true distribution of the real data, thus making

use of the structure and information contained in the real data. Put mathematically, one wants to

approximate the probability distribution of the true data to draw artifical, harmless samples from

it.

They are other reasons than sensitivity for generating data. A simple straightforward reason is

sample size enhancement: if one can double or triple the size of a dataset without duplicating

existing observations, one can compute more precise estimators (Xie et al. 2018). Another one

is simulation of extreme values: some industries, as for instance electricity production, have to

account for worst case scenarios when designing models - think of an electricity consumption spike

that happens because of an unexpected heat or cold wave (Pesch et al. 2015). In certain industries,

data might also be very expensive to collect (Kegel, Hahmann, and Lehner 2018), because of costly

collection devices or the high amount of noise. Finally, generating complex data is a good proof of

efficiency of a given technology or algorithm.

1.1 Related Work

Even though this master thesis only explores generation through GANs (Generative Adversarial

Nets), there are numerous other technologies used for data generation, some relying on rather

classical statistical approaches, some others leveraging the possibilities of deep learning.
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Figure 1: True and synthetic time series of wind power generated through a Hidden Markov Model
of order 2. Source: Pesch et al. 2015.

Markov chain based methods. One of the most ancient methods to generate data relies on

Hidden Markov Chain (HMC) models. To sample trajectories of a stochastic process (Z1, . . . , ZT )

given samples of real observations (X1, . . . , XT ), HMC works by estimating transition probabilities

between subsets of the (discretized) state space. One thus needs to make an hypothesis on the

order of the Markov process. Even though effective, HMC suffer from many limitations: they

are only suited for low order models, as the size of the transition matrices and consequentially

the amount of data need to estimate the transition probabilities accurately grows extremely fast;

they assume that the underlying model generating the true data is in fact Markovian; they are ill

suited to estimate non-homogeneous model, i.e. settings in which the transition probabilities vary

with time. Applications include wind power time series generation (Pesch et al. 2015) and Chinese

calligraphy generation (P. Liu et al. 2011).

Generative Moment Matching Networks. GMMNs were first proposed by Yujia Li, Swersky,

and Zemel 2015. This method relies on a deep neural network through which random uniform

vectors are propagated in order to create samples that match real data. The model is trained by

backpropagation, the loss function computing the distance between different moments of the real

and generated data. The model is thus trained to match high order moments of both distribu-

tion, resulting in high quality generation. GMMNs can generate speech parameters (Takamichi,

Koriyama, and Saruwatari 2017) and faces (Ren et al. 2016), for instance.

Variational autoencoders. Variational autoencorders were introduced by Kingma and Welling

2013. They use an encoding / decoding neural network combined with random inputs to generate

data, achieving excellent data generation. VAEs have been used for instance to generate sentences

(Bowman et al. 2015), chinese poetry (J. Li et al. 2018) and images (Yan et al. 2016).

Examples of data generated by these different algorithms are shown in Figures 1, 2 and 3.

Data generating models have been widely used for generating text and images, two ubiquitous

8



Figure 2: Fake MNIST digits generated by a Generative Moment Matching Network. Source:
Yujia Li, Swersky, and Zemel 2015.

Figure 3: Fake MNIST digits generated by a Variational Auto-Encoder, for size of latent space
2,5,10 and 20 (from left to right). Source: Kingma and Welling 2013
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data types in the machine learning literature because of their inherent complexity (which makes

them great supports to test deep learning models) and to their omnipresence in modern culture

(images and text can be found almost everywhere, and raise no particular problems as far as data

collection is concerned).

1.2 Outline

This master thesis, however, deals with generation of time series, a complex data type of high

practical importance. A time series simply is a collection of observations of a stochastic process

at given sampling times. In practice, time series thus come in the form of a collection of vectors

(X1, . . . ,XT ), where every Xi is to be though of as an observation of the stochastic process at time

i. Note that this process might very well be high dimensional. Time series are diverse and present

in numerous fields, such as health (electrocardiogramms), economics (stock records), energy (en-

ergy production and consumption) and engineering. They basically occurs every time a collection

of indicators is observed through time. Typical factors of complexity one encouters when dealing

with time series are intertemporal dependencies, high amounts of noise, non homogenous data size

(times series representing the same phenomenon have different lengths, such as for instance stock

records of two compagnies listed on the stock exchange for different periods) and complexity due

to high dimensionnality (different dimensions of the time series might interact, possibly through

time).

This master thesis explores a combination of two tools in order to generate time series. The first

one are (Wasserstein)-Generative Adversarial Networks, a particular class of generative models

invented by Goodfellow et al. 2014. GANs rely on solving a minmax problem by combining two

neural networks to approximate the density of the true data and create fake data by forwarding

gaussian noise through the trained networks. They are one of the most popular and promising

data generating technologies with those aforementioned. The second piece of the puzzle are signa-

tures, a non linear transformation of paths and time series that has surprinsing statistical features.

Signatures stem from the seminal work done by Chen (K.-T. Chen 1958) in the early 60’s, and

have been thoroughly analyzed by Lyons since the 90’s as key elements of rough path theory. Re-

cently, they have found promising applications in machine-learning-related topics (see for instance

Fermanian 2019 and section 2.3.4).

This thesis describes the results of a research internship that concludes the graduate degree "Math-

ématiques de la modélisation - Spécialité COCV (Contrôle, Optimisation, Calcul des variations)" 1

1Mathematics of Modelling, with specialization in control theory, optimization and calculus of variations.
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(Sorbonne Université) and lasted from May 2020 until early August 2020. The main contributions

of this work are the following.

1. In the first sections, we provided a global overview of GANs and signatures, from a theoretical

and practical point of view.

2. Building upon theoretical work by Chang and T. Lyons 2019, we implement an algorithm to

invert signatures, which is a challenging problem that has found very little effective solutions

so far.

3. We combine GANs and signature inversion to generate fake time series. Due to computa-

tional limitations, the generation performance is modest, but nevertheless gives promising

perspectives for data generation.

4. We make use of some specific features of the signature transform (namely the shuffle product

and the particular structure of the signature of linear paths) to design some simple metrics

for WGAN evaluation.

Our thesis is organized as follows.

• Section 2 provides an overview of GANs, WGANs and signatures from a theoretical and ap-

plied point of view. We focuse on properties used in this thesis, and present recent theoretical

results as far as GANs and WGANs are concerned.

• In Section 3, we present our data generation pipeline, including the inversion of signatures

through the insertion algorithm and signature generation by WGANs.

• Section 4 presents some experimental results.
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2 Generative Adversarial Networks (GANs) and Signatures:

Some Theoretical Elements

2.1 What Are GANs ?

Generative Adversarial Networks (GANs), sometimes called Generative Adversarial Nets, have

been introduced by Goodfellow et al. 2014. GANs fall into the class of data generating models:

the goal of a GAN is to learn a probability distribution from a sample of true data, and to learn

to produce new samples that are drawn from the same distribution. GANs consists of a discrim-

inator and a generator. Learning is done by adversarial training: while the discriminator learns

to distinguish true from fake data, the generator learns to produce fake data. While GANs could

theoretically be built with any kind of algorithm, it is common to choose neural networks for both

the discriminator and the generator. Put otherwise, a GAN is best described as a technique to

train a data generating model, rather than as generation model.

GANs have originally been used in Goodfellow et al. 2014 to generate fake images. Image gener-

ation is an important domain of application of GANs. They have been used for a large variety

of tasks: they are now recognized as being able to generate images of faces and various other

objects that look authentic to human observers. GANs have been used by Radford, Metz, and

Chintala 2015 to generate fake altered images (for instance generate images of women with glasses

by learning on images of men with and without glasses, and women without glasses). Y. Jin et

al. 2017 generate fake anime characters. GANs also perform surprisingly well for different image

transformation tasks, as for instance removing rain as in H. Zhang, Sindagi, and Patel 2019 or

denoising pictures, as done by J. Chen et al. 2018. Recent applications also include the generation

of high resolution versions of low resolution pictures (see for instance Vasu, Thekke Madam, and

Rajagopalan 2018) and image reparation (for instance filling missing parts of pictures) as done by

Yijun Li et al. 2017.

Apart from image generation and modification, GANs have been used on other types of data. The

structure of the trained network is usually modified to best fit the data structure. For instance,

Yu et al. 2017 use a RNN to generate Chinese poems and speeches by Barack Obama (an example

is displayed in Figure 4). Mogren 2016 uses a RNN to generate music (one can listen to generated

pieces here). L. Xu and Veeramachaneni 2018 train a GAN to generate tabular data, i.e. large

datasets with many features, both categorical and continuous, including features with high depen-

dencies.

12
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Figure 4: An excerpt of a fake Obama speech generated using a GAN. Source: Medium post by
one of the authors of Yu et al. 2017.

As far as time series generation is concerned, there has been little application of GANs so far

to our knowledge. Building upon RNN GANs, Simonetto 2018 generates spiking financial time

series. Other applications have focused on generating biosignals (Haradal, Hayashi, and Uchida

2018), sensor data (Alzantot, Chakraborty, and Srivastava 2017) and smart grid data (C. Zhang

et al. 2018). Yoon, Jarrett, and Schaar 2019 build a so-called TimeGAN that generates time series

and captures temporal dynamics through a specific network architecture.

2.1.1 The Original Problem

The goal of a GAN is to learn a target probability measure µ∗ supported on Rd. This measure

is assumed to be dominated by a known measure λ (this measure will be the Lebesgue measure

most of the time). One should think of this measure as being very complex and not estimable by

traditional means like maximum likelihood estimation. Conversely, d is meant to be very large, as

the data often consists of images, videos or even music. We assume to have at our disposition a

large sample X1, . . . , Xn ∈ Rd draw from µ∗.

Let Gθ ∈ {Gθ}θ∈Θ and Dα ∈ {Dα}α∈∆ denote respectively the generator and the discriminator.

Both the discriminator and the generator are parametric models (almost always neural networks);

thus their parametric spaces should be considered to be very large.

The generatorGθ takes as an input called the noise, most of the time a random variable Z supported

on Rk, which will sometimes be called the latent space. Its output lies in Rd. The parameter k

is much smaller than d, which is precisely the point of GANs: they are able to "convert" low

dimensional noise into high dimensional and diverse outputs. The generator is thus naturally

linked to a family of probability measures {µθ}θ∈Θ, defined through Gθ(Z)
L
= µθdµ. We will let

pθ denote the density of the measure µθ with respect to the measure λ, and p∗ the density of the

true distribution µ∗.
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The discriminator takes as input observations in Rd and outputs a number in [0, 1] that corresponds

to the probability that the observation comes from the true probability distribution µ∗. The

discriminator is trained to become better and better at distinguishing true from fake data, while

the generator’s goal is to improve in data counterfeiting: both nets have opposite goals.

Given a sample of gaussian noise Z1, . . . , Zn, the problem the GAN tries to solve is

inf
θ∈Θ

sup
α∈∆

 n∏
i=1

Dα (Xi)×
n∏
i=1

(
1−Dα ◦Gθ (Zi)

) . (1)

Let us examine this problem closely. The objective function corresponds to the likelihood,

as calculated by a given discriminator Dα, that the true data comes from µ∗ and that the fake

observations Gθ(Z1), . . . , Gθ(Zn) do not come from µ∗. In a first time, the objective function is

maximized in α given a certain θ: this means that one looks for the best discriminator given a

certain generator. Once this discriminator is determined for every θ ∈ Θ, one choose the best

generator in the sens that it minimizes the maximized objective function: by doing so, one chooses

the generator that performs best in fooling the discriminator. This model will thus be able to

generate fake observations hopefully indistinguishable from real ones.

Note that in practice, it is common to minimize the natural logarithm of the objective function.

Problem (1) thus becomes

inf
θ∈Θ

sup
α∈∆

 n∑
i=1

lnDα (Xi) +

n∑
i=1

ln
(
1−Dα ◦Gθ (Zi)

) . (2)

Note also that we do not assume that µ∗ is in {µθ}θ∈Θ.

2.1.2 Some Theoretical Properties

GANs suffer from little theoretical guarantees. As noted by Gérard Biau et al. 2020, "despite in-

creasingly spectacular applications, little is known about the mathematical and statistical forces

behind these algorithms [...] and, in fact, nearly nothing about the primary adversarial problem"

(2). This section details some theoretical results on GANs coming from Gérard Biau et al. 2020

and Goodfellow et al. 2014.

A first important theoretical fact is the link between the problem (2) and the Jensen-Shannon

divergence.

Definition 1. Let P,Q be two probability distributions which are absolutely continuous with
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respect to a measure λ. Their densities are denoted p and q respectively. The Kullback-Leibler

divergence from P to Q is defined as

DKL(P ||Q) :=

∫
p(x) log

(
p(x)

q(x)

)
dλ(x).

Definition 2. The Jensen-Shannon divergence between P,Q is defined as

DJS(P,Q) = DKL

(
P || P +Q

2

)
+DKL

(
Q||P +Q

2

)
.

Note that problem (2) is the empirical counterpart of the minimization of the quantity

L(θ,D) =

∫
log(D(x))p∗(x)dλ(x) +

∫
log(1−D(x))pθ(x)dλ(x). (3)

We will always consider in the following that the discriminator D is such that L(θ,D) > −∞

(this property is called θ-admissibility by Gérard Biau et al. 2020).

Goodfellow et al. 2014 show that if one takes D from the class D∞ of all Borel functions from

E to [0, 1], one has

sup
D∈D∞

L(θ,D) = L(θ,D∗θ) = 2DJS(µ∗, µθ)− log 4, (4)

whereD∗θ(x) = µ∗(x)
µ∗(x)+µθ(x) . Gérard Biau et al. 2020 improve upon this result by giving a uniqueness

result.

Theorem 1. Let θ ∈ Θ be such that µθ > 0 λ-ae. Then D∗θ is the unique maximizer of

sup
D∈D∞

L(θ,D). (5)

A natural question that derives from this result is the existence of an optimal θ: given µ∗, what

is the optimal parameter θ ∈ Θ that gives the best approximation of the unknown density p∗ ?

Recall that we do not assume that p∗ can be written as pθ′ for a particular θ′ ∈ Θ.

Theorem 2. Assume that the model {µθ} is indentifiable, compact for the metric δ defined

through δ(P,Q) :=
√
DJS(P,Q) and convex. Assume also that p∗ is bounded (m ≤ p∗ ≤M) and

that µθ ≤M for all θ ∈ Θ. Then there exists θ∗ such that

{θ∗} = arg min
θ∈Θ

L(θ,D∗θ).
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However, in practice, one always works with parametrized families of generators and discrimi-

nators. Letting D denote the parametrized class of discriminators, we therefor define θ̄ as

θ̄ = arg min
θ∈Θ

[
sup
D∈D

L(θ,D)

]
(6)

We thus finally state a result linking some properties of the discriminator class and the generator

class to the precision of the approximation of the true distribution.

Theorem 3. Assume that

1. (H1) : there exists T ∈]0, 1/2] such that

min(Dθ, 1−Dθ) ≥ T, ∀ θ ∈ Θ.

2. (H2) : there exists ε ∈]0, T [ and D ∈ D a θ̄-admissible discriminator such that

∥∥D −D∗θ̄∥∥∞ ≤ ε.
There exists a constant C, depending only upon T , such that

0 ≤ DJS(µ∗, µθ̄)−DJS(µ∗, µθ∗) ≤ cε2. (7)

Thus, if the discriminator class is big enough, one can approximate the true density in terms

of Jensen-Shanon divergence.

Gérard Biau et al. 2020 also provide further properties of GANs, including convergence of θ̄ towards

θ∗ as the size of the generator class grows.

2.1.3 Taming and Training GANs

Training GANs is notoriously difficult as the model tries to solve a double "inf-sup" problem with a

great number of parameters. While conventional neural networks used for instance for classification

can produce good results after a few hundred iterations of mini-batch training, GANs require much

more training. Following Goodfellow et al. 2014 and Gérard Biau et al. 2020, we suggest using the

following training strategy for GANs:

1. The discriminator is trained by maximizing the objective function through one step of gra-

dient ascent.
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2. The generator is trained by minimizing the alternative objective function

θ 7→ −
n∑
i=1

ln
(
Dα ◦Gθ (Zi)

)
(8)

through one step of gradient descent. While resulting in identical minimizers, this optimiza-

tion step provides bigger gradients and thus ensures faster convergence of the model.

It is common to train one of parts of the GAN more than the other one (for instance, the

discriminator is trained for ten steps and the generator only for one step, as in Gérard Biau et al.

2020): in the algorithm described below, this asymmetry is controlled by the hyperparameter u 2.

Algorithm 1 describes the training scheme with more details. Note that update is here described in

terms of classic batch gradient descent for the sake of clarity and illustration of the general training

principle; in practice, one often uses more efficient algorithms such as Adam (see Appendix A).

Algorithm 1 GAN training through mini-batch stochastic gradient descent.
1: Inputs: X1, . . . , Xn: sample of true data; m: mini-batch size; K : number of training

iterations; u: number of training steps for the discriminator for every generator
step.

2: for u ∈ {1, . . . ,K} do
3: Sample X1, . . . , Xm true observations.
4: Sample Z1, . . . , Zm noise observations from N (0, 1).
5: Upgrade discriminator through gradient ascent for u steps:

α← α+∇α
1

m

m∑
i=1

[
lnDα(Xi) + ln

(
1−Dα ◦Gθ(Zi)

)]
.

6: Upgrade generator through gradient descent:

θ ← θ +∇θ
1

m

n∑
i=1

ln
(
Dα ◦Gθ (Zi)

)
.

2.2 From GANs to Wasserstein-GANs with Gradient Penalty (WGAN-

GP)

2.2.1 The Wasserstein Distance

The Wasserstein distance is a central object of optimal transport theory (Villani 2003). Informally,

optimal transport can be though of as the analysis of optimal (with respect to a certain cost func-

tion) transportation plans between sources and objectives. The original problem was formulated

by french mathematician Gaspard Monge (1746-1818) in his famous work Mémoire sur la théorie
2When training WGANs, we found this parameter to be very sensible to the datatype: some setups require large

assymetries (u ∼ 10), and in other cases, a perfectly symmetric training schema works best.
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Figure 5: An illustration of the Monge coupling problem: squares stand for sources and circles for
targets. Source: Villani 2008.

des déblais et des remblais (1781) (Villani 2008). Assume that one has piles of dirt and holes

located in the plane, all of which have the same volume. Assume also that transporting dirt is

costly, and that the cost of moving one pile of dirt to a hole is equal to the distance times the

volume. What is the optimal transportation plan, i.e. the coupling between piles and holes that

minimizes the transportation cost ?

In mathematical terms, this problem amounts to match two (probability) distributions while pre-

serving mass. This last condition simply means that no dirt leaves or enters the framework. To

fix ideas, consider an easy case where measures are discreet and with countable support. Let

µ := 1
n

n∑
i=1

δyi and η := 1
n

n∑
i=1

δxi be the empirical distributions associated to two families of points,

the sources (xi) and the targets (yi). Let c : R2×R2 → R+. be the cost function that associates to

two points in the plan the cost to transport one unit of mass from one to the other (this function

often is a distance). The Monge problem writes

min
σ∈S(n)

n∑
i=1

c(xi, yσ(i)) (9)

where S(n) stands for the set of permutations of {1, . . . , n}.

In this discrete setting, mass is automatically preserved as one transports from points to points

and all points have unit mass. Finding the optimal permutation amounts to finding an optimal

pairing between sources and targets. Monge extended his seminal ideas to a 3-dimensionnal setting

with continuous densities (see Villani 2008 for a detailed description of Monge’s work).

The modern formulation of optimal transport, called the Monge-Kantorovitch problem, is due

to a reformulation and relaxation of the Monge problem by sovietic mathematician Leonid Kan-

torovitch. Let (X , µ) and (Y, η) be two probability spaces.

Definition 3. A coupling of µ and η is a couple of random variables (X,Y ) such that Law(X) = µ

and Law(Y ) = η.
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Remark. This amount exactly to building a density γ on X ×Y such that its marginals are equal

to µ and η. A coupling thus is a way to transport mass allocated according to µ to locations

placed according to ν. The coupling condition can be seen as a mathematical formulation of mass

conservation. Indeed, if γ couples µ and η, and one sees, for every measurable subsets A ∈ X and

B ∈ Y, γ(A×B) as the quantity of mass transported from A to B, the coupling condition reads

γ(A× Y) = µ(A) and γ(X ×B) = η(B),

which precisely means that all mass coming from A must be allocated to some targets, and all

mass allocated to a region of targets must come from some sources.

Let Γ(ν, η) denote the set of all couplings of µ and η. We can now state the optimal transport

problem.

Definition 4. Let c : X ×Y → R+ be a cost function. The Monge-Kantorovitch problem consists

in solving

inf
γ∈Γ(µ,η)

∫
X×Y

c(x, y)dγ(x, y). (10)

Solving this problem means finding a transportation plan or coupling such that it minimizes the

transportation cost between two measures among all transportation plans. Indeed, the objective

function can be interpreted as the infinitesimal sum of transported quantities dγ(x, y) times the

cost of transport between both locations.

As optimal transport is an exploding field, there are numerous properties and known facts about

particular cases and settings of this problem. We will only state those needed to properly define

the Wasserstein distance and refer the curious reader to Villani 2008 and Villani 2003 for an

extensive literature review of the subject. For applications to machine learning and data science,

and computational aspects, the reader is referred to the exhaustive book by Peyré, Cuturi, et al.

2019.

Let us now start our quick tour of optimal transport. To quote Villani 2003, "the first good thing

about optimal couplings is that they exist".

Proposition 1. Assume that c(·, ·) is lower semi-continuous and that the spaces X and Y are

compact. The problem (10) has a solution.
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Remark. This means that problem (10) can be rewritten as

min
γ∈Γ(µ,η)

∫
X×Y

c(x, y)dγ(x, y). (11)

The Wasserstein distance between two probability measures is defined as the minimal cost of

transportation between those measures, when the associated cost is itself a distance.

Definition 5. Let d(·, ·) be a distance on X × X . The Wasserstein distance Wp(·, ·) between two

probability measures µ, η is defined as

Wp(µ, η) :=

[
min

γ∈Γ(µ,η)

∫
X×X

d(x, y)pdγ(x, y)

]1/p

. (12)

Focusing on the distance W1, we will state one last fact, known as Kantorovitch-Rubinstein

duality. This reformulation of the problem through convex duality is a central element of the

application of optimal transport to the training of GANs.

Proposition 2. One has

W1(µ, η) = sup
f :X→R

{∫
X×X

f(z)d(µ− η)(z), Lip(f) ≤ 1

}
. (13)

Remark. Lip(·) stands for the Lipschitz constant of a function. Note that liptschitz functions are

always continuous.

Alternatively, one can rewrite (13) in probabilistic terms as

sup
Lip(f)≤1

EX∼µ
[
f(X)

]
− EY∼η

[
f(Y )

]
. (14)

This last formulation of the Wasserstein distance is the central element of Wasserstein-GANs.

2.2.2 Introducing the Wasserstein Distance in GANs

The previous section alluded to the following fact, which must be stated clearly.

Proposition 3. W1(·, ·) is a distance on P1(X ), the space of probability measures supported on

X that have a finite first moment.

Proof. While symmetry and separation are easy to prove, the triangular inequality is a bit more

tricky to get and relies on the so-called "gluing Lemma".

Let µ1, µ2, µ3 be threee probability measures on Rd. Let (X1, X2) be an optimal coupling of µ1
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and µ2 and (Z2, Z3) be an optimal coupling of µ2 and µ3. The gluing Lemma states that one

can glue together these two couplings, resulting in a collection (Y1, Y2, Y3) such that law(Y1, Y2) =

law(X1, X2) and law(Y2, Y3) = law(Z2, Z3). One thus has

W1(µ1, µ3) ≤ Ed(Y1, Y2)

since the Wasserstein distance is defined through optimality of transport plans, and

Ed(Y1, Y3) ≤Ed(Y1, Y2) + Ed(Y2, Y3)

=W1(µ1, µ2) +W1(µ2, µ3)

by using the triangular inequality and by optimality of the transport plans defined above. When

p ≥ 1, one needs to use the Minkovski inequality for the last steps.

The goal of a GAN is to approximate a probability measure, or, to put it otherwise, to reduce

the distance between the unknown measure that characterizes the data and an artificial measure

created by the generating mechanism. It is thus natural to introduce the Wasserstein distance

to capture the similarity of those two measures. This was first done by Arjovsky, Chintala, and

Bottou 2017. Stepping from a GAN to aW-GAN simply consists in changing the objective function:

the network does not try to maximize-minimize the Jensen-Shanon divergence anymore, but tries

to minimize the Wasserstein distance between two measures. However, since the Wasserstein

distance is the solution of a complex optimization problem and does not have a close form solution

most of the time, the problem also includes a maximization step to approximate W1 through the

reformulation (14). The goal of a WGAN is thus to solve the problem

inf
θ∈Θ

sup
α∈∆

[
EX∼µ∗

[
Dα(X)

]
− EZ∼N (0,1)

[
Dα ◦Gθ(Z)

]]
, s.t. Lip(Dα) ≤ 1, (15)

through solving its empirical counterpart

inf
θ∈Θ

sup
α∈∆

1

n

 n∑
i=1

[
Dα(Xi)

]
−

n∑
i=1

[
Dα ◦Gθ(Zi)

] , s.t. Lip(Dα) ≤ 1, (16)
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where X1, . . . , Xn is a sample of true data with density p∗, and Z1, . . . , Zn is a gaussian sample.

First, notice the change in nature of the discriminator. In a GAN, the discriminator is trained

to produce a probability. In a WGAN, the discriminator no longer acts as a judge assigning

probabilities to observations, but as a distance approximator. Secondly, one should notice that the

optimization problem is now constraited by a Lipschitz constraint, which can be reformulated as

∥∥∇xDα(x)
∥∥ ≤ 1 a.e. (17)

This constraint introduces an additional difficulty in training the WGAN, which is usually ad-

dressed by clipping or gradient penalty.

Clipping is a somewhat brutal method to enforce the Lipschitz constraint. It consists in constrain-

ing all parameters (α1, . . . , αp) = α of the discriminator to be in a small compact set, [−0.01, 0.01]

for instance (as in Arjovsky, Chintala, and Bottou 2017). This makes the parameter space com-

pact and thus enforces Lipschitz constraint up to a multiplicative constant. At every training step,

weights are checked and simply pushed to the closest threshold if they are to big. As Arjovsky,

Chintala, and Bottou 2017 put it, "weight clipping is a clearly terrible way to enforce a Lipschitz

constraint. If the clipping parameter is large, then it can take a long time for any weights to reach

their limit, thereby making it harder to train the critic till optimality. If the clipping is small, this

can easily lead to vanishing gradients when the number of layers is big, or batch normalization

is not used (such as in RNNs). We experimented with simple variants (such as projecting the

weights to a sphere) with little difference, and we stuck with weight clipping due to its simplicity

and already good performance.However, we do leave the topic of enforcing Lipschitz constraints in

a neural network setting for further investigation, and we actively encourage interested researchers

to improve on this method".

A notable improvement on this technique was provided by Gulrajani et al. 2017. The new tech-

nique to enforce the Lipschitz constraint, called gradient penalty (GP), simply consists in relaxing

the problem through a soft penalization of the constraint. The WGAN-GP problem thus writes

inf
θ∈Θ

sup
α∈∆

1

n

 n∑
i=1

[
Dα(Xi)

]
−

n∑
i=1

[
Dα ◦Gθ(Zi)

]+ λ
1

n

n∑
i=1

(∥∥∇Dα(Yi)
∥∥− 1

)2

. (18)

λ is a hyperparameter which controls the importance of the gradient penalty. Since enforcing

the constraint almost everywhere is impossible, the constraint is only enforced on a sample of

points Y1, . . . , Yn. These points are sampled uniformly along lines connecting the real and fake
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Figure 6: Evolution of the norm of the discriminator’s gradient during the training of a WGAN with
gradient penalty. As the training of the networks goes further, the discriminator’s gradient norm
tends toward 1, after oscillating in the first stages of training. The trained WGAN approximates
a density in 2D and is fully described in section 4.2.

observations. Note that the discriminator’s gradient is constrained not to be smaller than 1 but

close to 1: this is motivated by empirical results and the fact; furthermore, according to the authors

of the aforementioned paper, the gradient of the optimal critic is most of the time close to 1. Figure

6 shows the evolution during training of the discriminator’s gradient norm of the WGAN described

in section 4.2.

Algorithm 2 presents the training strategy with more details. Optimization is done with Adam

optimizer. For further details on this optimization algorithm, see Appendix A.

2.2.3 Theoretical Properties of WGANs

Gérard Biau, Sangnier, and Tanielian 2020 recently gave some theoretical insights into WGANs,

following the seminal work of Liang 2018 and P. Zhang et al. 2017. We here present a few results

similar to those presented for GANs in section 2.1.2.

A first guarantee one wishes to have when working with WGANs is the existence of a maximizer

among the class of discriminators (in our case, neural networks) one considers. The generator and

discriminator can in this framework be written as

Gθ(z) = Up σ

(
Up−1 · · · · · · U2 σ (U1z + b1) + b2

)
· · ·+ bp−1

)
+ bp

and
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Algorithm 2 WGAN training through mini-batch stochastic gradient descent with GP.
1: Inputs: X1, . . . ,Xn: sample of true data; m: mini-batch size; K : number of training

iterations; λ: Gradient Penalty parameter; α, β1, β2: Adam optimizer parameters.
2: for k ∈ {1, . . . ,K} do
3: Sample X1, . . . , Xm true observations.
4: Sample Z1, . . . , Zm noise observations from N (0, 1).
5: for i ∈ {1, . . . ,m} do
6: Sample ε ∼ U [0, 1].
7: Yi ← εXi + (1− ε)Gθ(Zi)
8: L(i) ← Dα ◦Gθ(Zi)−Dα(Xi) + λ

(∥∥∇Dα(Yi)
∥∥− 1

)2

9: Upgrade discriminator through gradient ascent:

α← Adam

∇α 1

m

m∑
i=1

L(i), α, β1, β2

 .

10: Upgrade generator through gradient descent:

θ ← Adam

∇θ 1

m

m∑
i=1

L(i), α, β1, β2

 .

Dα(x) = Vq σ̃
(

Vq−1 · · · σ̃
(
V2σ̃ (V1x+ c1) + c2

)
+ · · ·+ cq−1

)
+ cq.

σ and σ̃ are the network’s activation functions, resp. rectifier and Groupsort. The matrices Ui

and Vi are the matrices of weights of the generator and the discriminator respectively. The bi’s

and ci’s are offset vectors.

We let D denote the parametrized class of discriminators.

The two following assumptions will always be assumed to hold true. ‖.‖2 denotes the operator

norm for matrices derived from the 2-norm on vectors, i.e. ‖A‖2 = max
‖x‖2=1

‖Ax‖2. The matrice norm

‖.‖∞ is defined in the same manner for the supremum vector norm.

1. First, we assume that for all θ =
(
U1, . . . , Up, b1, . . . , bp

)
∈ Θ,

max
(
‖Ui‖2 , ‖bi‖2 : i = 1, . . . , p

)
6 K1

where K1 > 0 is a constant.

2. Besides, we assume that for all α =
(
V1, . . . , Vq, c1, . . . , cq

)
∈ Λ,

‖V1‖2,∞ 6 1,max
(
‖V2‖∞ , . . . ,

∥∥Vq∥∥∞) 6 1, and max
(
‖ci‖∞ : i = 1, . . . , q

)
6 K2

where K2 > 0 is a constant.
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These two assumptions ensure that all discriminators we consider are indeed 1-Lipschitz.

Theorem 4. For every θ ∈ Θ, there exists α ∈ Λ such that

|Eµ∗(Dα)− Eµθ (Dα)| = sup
f∈D
|Eµ∗f − Eµθf |. (19)

In plain language, this theorem means that for every generator, there exists a perfect discrimi-

nator for every considered generator. Note that if one had access to all 1-Lipschitz functions and

could choose f within this larger class, this theorem would simply be the existence of an optimal

transport plan through Kantorovitch duality. Uniqueness, however, cannot be guaranteed without

further assumptions.

Furthermore, one also has a guarantee of existence of a generator that minimizes this quantity.

Theorem 5. There exists at least one solution to the problem

inf
θ∈Θ

sup
f∈D
|Eµ∗f − Eµθf |. (20)

Note that this statement only relies on the two assumptions made earlier and does not require

compactness of E.

2.2.4 Advantages and Drawbacks from Using WGANs

GANs notoriously suffer from numerous recurrent problems (Weng 2019). They include, but are

not limited to:

1. Mode collapse. Mode collapse is said to occur when the generator fails to produce diverse

observations and only produces one type of object. This is a problem as the goal of GANs is

to produce samples as diverse as the original data.

2. No convergence. One can easily reformulate problem (1) in terms of game theory: the

goal of training GANs is to attain a Nash equilibrium in a two-player non cooperative game.

However, this can sometimes fail, resulting in oscillating models with no convergence.

3. Low dimensional support. This issue is specifically addressed by Arjovsky and Bottou

2017. In fact, even though real data (such as images) might look highly complex, its proba-

bility density often concentrates on a low-dimensional manifold. Since the generator also lies
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in a low dimensional space, it is likely that their densities’ supports do not overlap. A con-

sequence is that the discriminator will become almost perfect quickly, resulting in vanishing

gradients.

4. Vanishing gradient. As the discriminator gets better and better, and eventually perfect,

the gradient of the loss function tends toward 0, thus making training impossible. This is

precisely why the alternative loss function (8) is often used in practice.

WGAN were introduced as an attempt to solve some of these problems. As noticed by Arjovsky,

Chintala, and Bottou 2017, WGANs are less prone to mode collapse and do generate diverse

samples. They come, however, at the price of sacrificing the interpretability of the discriminator.

When training a GAN, one can assess the quality of the model by testing the discriminator on

generated samples: the output of the discriminator can be interpreted as the probability that the

discriminator classifies the generated sample as a true sample. The generator is perfectly trained

if the discriminator classifies its output to be true data with probability 0.5: this amounts to the

discriminator flipping a coin. When training WGANs, the output of the discriminator corresponds

to an approximation of the Wasserstein distance and is less interpretable.

2.3 Signatures

A recurrent problem in computer science and machine learning is dimension reduction: how can one

summarize information contained in large and complex object in simpler objects, without loosing

too much information, and ideally, while keeping the possibility to invert this compression process

? This fundamental question has motivated the use of Fourier basis and wavelets for image, sound

and signal compression (see for instance Mallat 1999).

Signatures are among the tools initially designed by pure mathematicians for pure mathematics,

and which later on found surprising applications in machine learning. Its origins trace back to

the work of K.-T. Chen 1958. Lyons pioneered its use in rough path theory (see for instance

T. J. Lyons, Caruana, and Lévy 2007b). They allow for path compression but without being a

transformation based on a base of functions (as Fourier or wavelets).

Signatures can be seen as a highly non linear transformation that maps paths (functions from

a real time interval [0, T ] into a vector space V ) into tensor product of V . This spaces, even

though quite complex and difficult to analyse, can be easily identified with real vector spaces

like Rd as we will explain with greater detail later on. This makes it possible to map complex,

high-dimensional paths into simpler vectors of Rd while conserving a great amount of statistical

information. Another advantage of signatures, which is of great importance when dealing with time
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series, is its invariance with respect to path length: the signature transform allows to compare and

to use standard statistical techniques (classification, regression) on time series that are of different

length, thus making techniques such as rescaling or path truncature unnecessary. Finally, the

signature transform has been found to have surprising applications in and links with probability

theory and statistics, in particular when applied to multimodal datastreams that are structured

by complex inter-dimensional correlations, both in time and space. This section provides formal

definition of the signature transform, fundamental properties and applications to machine learning

problems.

2.3.1 Preliminaries

Signatures can be described in a very abstract and formal manner, using tensor products, tensor

spaces and abstract rougth paths. We will, however, present this tool in a simplified framework,

both for the sake of clarity and because it is well suited to our ends. Thus, in the following, we

will always talk of paths as functions from [0, 1] to Rd, but the reader seeking generalizations or

familiar with rough path theory should keep in mind that things can be generalized to (V,‖.‖),

an arbitrary Banach space of finite dimension. Paths will be denoted by Xt := X(t) to lighten

notations. The subscript denotes time, while the superscript will denote a given dimension of the

path : Xi
tj is the i-th component of the path, evaluated at the time moment tj .

To make rough paths a little less wild, one must first equip the space of paths with a good norm.

The bounded variation norm is well suited for this purpose.

Definition 6. The p-variation of X is defined as

‖X‖p−var :=

sup
D

∑
ti∈D
‖Xti −Xti−1‖p

1/p

, (21)

where the supremum is taken on all possible finite partitions D = {0 = t1 < · · · < tk = 1} of the

interval [0, 1].

Note that ‖.‖p−var is a semi-norm, since the p-variation of constant paths is 0. A simple way

to turn this semi-norm into a full norm is to consider the so-called bounded variation norm

‖X‖BV p :=‖X‖p−var + sup
z∈[s,t]

∥∥X(z)
∥∥ . (22)

The space of paths that have finite bounded variation norm is denoted BV p(V ). (BV p(V ),‖.‖BV p)

is a Banach space (T. J. Lyons, Caruana, and Lévy 2007a). One can think of this norm as the
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Figure 7: The Heaviside step function has a p-variation of 1 for any p ≥ 1 on any interval that
includes 0 in its iterior.

maximal sum of increments, or variations, that can occur along a path. For instance, a step func-

tion like the Heaviside function (Figure 7), has a p-variation of 1 on the interval [−1, 1], and its

BV p norm is 2.

To define the signature transform, we also need to give some details about the Riemann-Stieljes

integral, which is a generalization of the Rieman integral and is well suited for integration of rough

paths.

Definition 7. Let X,Y : [0, 1]→ Rd be two paths, and Dn =
{

0 = tn1 < · · · < tnk = 1
}
a sequence

of partitions which mesh size ‖Dn‖ = sup
1≤i≤k

|ti − ti−1| tends to 0. For sni ∈ [tni − tni−1] for all i, n, if

the sum

∑
ti∈Dn

Ysi (Xti −Xti−1) ∈ Rd (23)

converges to a limit independent from (sni ) and from Dn, this limit is called the Riemann-Stieljes

integral of Y against X, and is denoted by

∫ t

s

YtdXt ∈ Rd.

Intuitively, one can think of the classic Riemann integral as a integral where the size of in-

crements is fixed (and uniformly equal to the length of the segment on which the function is

integrated). The Riemann-Stieljes allows for varying increment size. Readers familiar with the Itô

integral will also notice the strong resemblance between those two objects: the Riemann-Stieljes
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integral can be seen as a deterministic version of the Itô integral.

2.3.2 First Definitions

A path Xt ∈ Rd can be though of a collection of d signals living in R, that possibly interact through

time. In a simplified way, the signature transform captures the variations of each signal with respect

to every other through integration from one dimension against another. It also appears naturally

when computing solutions to controlled differential equations (we do not discuss this topic, which

is covered in Chevyrev and Andrey Kormilitzin 2016 for instance). To define it properly, we must

first define the signature coefficient associated to a word of length m of the alphabet {1, . . . , d},

meaning a ordered collection of m elements from {1, . . . , d} with allowed repetitions (i.e. an object

exactly constructed as one constructs real words from the set of letters of the latin alphabet).

Definition 8. Let K = (i1, . . . , im) be a word of size m of the alphabet {1, . . . , d}. The signature

coefficient associated with the word K, denoted by SK(X) is

SK(X) :=

∫
0<z1<···<zm<1

dXi1
z1 . . . dX

im
zn ∈ R. (24)

The signature is an iterated integral, and is thus very sensible to the order of integration : when

permuting two letters within the word K, there is no reason for the two signatures to be equal.

The number of words of length m one can form from the alphabet {1, . . . , d} is finite and equal to

md. We will write them Wm
1 , . . . ,Wm

dm : the superscript denotes the length of the word, while the

subscript stands for the number of the word (words can be ranked by lexicographical order, which

is detailed in Appendix B.1). The signature of a path is a infinite series that collects, for every

length m ≥ 1, all possible signature coefficients that can be computed with words of length m.

Definition 9. Let X : [0, 1] → Rd be of bounded variation. The signature of X is the infinite

series equal to

S(X) :=
(

1,S1(X) . . . ,Sm(X), . . .
)
, (25)

where the m-th coefficient of S, Xm, is equal to

Sm :=
(
SW

m
1 , . . . , SW

m
dm

)
∈ Rd

m

. (26)

Formally speaking, the signature is an element of the infinite tensor product space. The inter-
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ested reader is referred to Fermanian 2018 for further details. Since our goal is to use signatures

within a machine-learning framework, in which a computer will perform vectorized operations on

signatures, identifying tensor spaces with real vector spaces is a natural simplification.

Dealing with infinite objects like the signature is highly impractical. An object one will often

consider when using the signature for machine learning is the truncated signature.

Definition 10. The truncated signature at order N is the finite collection of signature coefficients

SN (X) :=
(

1,S1, . . . ,SN
)
∈ R

dN+1−1
d−1 . (27)

The truncated signature of order N lives in the space R
dN+1−1
d−1 : there are d words of length

1, d2 words of length 2, etc. to which one generally adds the first coefficient equal to 1 (which is

the word of length 0 in a certain sens), and finally, the number of words of length between 0 and

N is
N∑
i=0

di = dN+1−1
d−1 . When using signatures for tasks like classification, this is how it will be

concretely used. The object one will encounter in practice thus looks like

SN (X) =
(

1, S(1)(X), . . . , S(d)(X), S(1,1)(X), . . . , S(d,d)(X), . . . , S(d,...,d)(X)
)
∈ R

dN+1−1
d−1 .

The first coefficient 1 is always dropped, since it adds no information to the signature.

Remark. This means that the size of the signature grows exponentially fast. The signature taken

at higher order contains more and more information, but is also bigger and bigger: this is a trade-off

one needs to keep in mind when using the signature in machine learning.

2.3.3 Examples and properties

Signature are complex objects. This section gives a few simple examples to fix ideas.

Example 1. (Signature in 2 dimensions). Let X = (X1, X2). The signature at order 2 thus is

∫ 1

0

∫ u2

0
dX1(u1)dX1(u2)

∫ 1

0

∫ u2

0
dX1(u1)dX2(u2)∫ 1

0

∫ u2

0
dX2(u1)dX1(u2)

∫ 1

0

∫ u2

0
dX2(u1)dX2(u2)

 .

Example 2. (Signature of a simple path). Consider the path X(t) = (t, f(t)), for t in [0, 1], which

is simply the representation of the graph of a function as a path. Assume that f(0) = 0. Simple

calculations yield
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Figure 8: Graphical interpretation of signature coefficients. Source: Fermanian 2019.

S(2,1)(X) =

∫
0<u1<u2<1

df(u1)du2 =

∫ 1

0

f(u2)du2,

S(1,2)(X) =

∫
0<u1<u2<1

du1df(u2) = f(1)−
∫ 1

0

f(u2)du2.

This allows for a graphical interpretation of the signature: the two calculated coefficients capture

the area below and above the curve of f (see figure 8).

The following example is somewhat crucial when using the signature in machine learning. When

using paths in practice, one can only sample them at precise time points: linking the values of

the stochastic process at these time points thus yields a piece wise linear path. The good news is

that it is very easy, from a computational point of view, to compute the signature of these kind of

paths. Let us first compute the signature of a linear path.

Example 3. (Signature of linear paths). When paths are linear, i.e. when

Xt = X0 + (X1 −X0)t =


a1t+ b1

...

ant+ bn

 ,

the signature is easy to compute. Indeed, for any word K = (i1, . . . , in), one has

SK(X) =
ai1 · · · ain

n!
.

To compute the signature of piece wise linear paths, we will need one small lemma, that makes

31



the link between those paths and simply linear paths.

Proposition 4. (Chen’s identity). Let a ∈]0, 1[, and let X : [0, a] → Rd and Y : [a, 1] → Rd

be two continuous paths of bounded variation. Let X ∗ Y be the concatenated path obtained by

concatenating X and Y , i.e. by gluing together the two paths. Then one has

S(X ∗ Y )[0,1] = S(X)[0,a] ⊗ S(Y )[a,1], (28)

where S(X)[x,y] denotes the signature with integration on the time segment [x, y], and ⊗ is the

Kronecker product between two vectors.

This lemma is key to computing the signature of time series. Indeed, one can see that by

iterating Chen’s identity, it is easy to compute the signature of a piece wise linear path of multiple

pieces. The full signature of such a path is simply equal to the Kronecker product of the signatures

computed on all pieces: if X : [0, 1] → Rd is such a path, i.e. linear on all pieces of a partition of

[0, 1] of the form
{

[ti, ti+1], 1 ≤ i ≤ N
}
, one has

S(X)[0,1] =

N⊗
i=1

S(X)[ti,ti+1]. (29)

Last but not least, we will state two more properties of the signature: the first one is an interesting

structure that characterises the signature and will help us determine later on if the vectors we

generate are indeed signatures; the second one is a property about the approximation capacities

of the signature transform.

Before going further, let us briefly recapitulate the notations used to avoid any confusion :

• S(X) denotes the full signature (an infinite series) of a path X.

• For a word K, SK(X) stands for the signature coefficient associated with this word (a real

number).

• SN (X) is the full signature truncated at order N .

• Sn(X) is the collection of all signature coefficients associated with words of length n.

• The notation S[a,b](X), used to denote the full signature but with integration on the segment

[a, b], is specific to Proposition 4 and will not be used anymore.

The signature coefficients associated with two words are surprisingly directly linked to the coeffi-

cients associated with the elements of the shuffle product of these two words. The shuffle product
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is a natural operation one can perform on words: it consists in forming all possible words by con-

catenating the two initial words and permuting the letters, but with the additional constraint that

the initial letter order - the order within the words - must be preserved.

Definition 11. (Shuffle product) Let I = (i1, . . . , in) and J = (j1, . . . , jm) be two words from the

alphabet {1, . . . , d} of length n and m. Their shuffle product, denoted I tJ is defined as the set of

permutations of the letters of the word (i1, . . . , in, j1, . . . , jm) that preserves the order within the

words I and J .

Example 4. Let I = (1, 2) and J = (3, 4). The word (1, 3, 2, 4) is in I t J , but (1, 4, 3, 2) is not,

since the ordering of the word J imposes that the letter 3 must be placed before the letter 4.

Example 5. Using real words, the shuffle product of the words "yes" and "no" includes "yenos",

"ynoes" and "yesnso", but not "yeons" or "yonse".

One can obtain the product of two signature coefficients associated to two words (which we

recall are two real numbers) by shuffling the words and summing up all the signature coefficients.

Proposition 5. (Shuffle identity) Let I, J be two words from the alphabet {1, . . . , d} of length n

and m. One has

SI(X)SJ(X) =
∑

K∈ItJ
SK(X) ∈ R. (30)

Example 6. For instance, one has

S(1)(X)S(2)(X) = S(1,2)(X) + S(2,1)(X)

and also

S(1,2)(X)S(3,4)(X) =S(1,2,3,4)(X) + S(1,3,4,2)(X) + S(1,3,2,4)(X)

+S(3,4,1,2)(X) + S(3,1,4,2)(X) + S(3,1,2,4)(X).

This section ends with an approximation theorem that is central for the use of signature in

Machine Learning. It uses the concept of tree-like paths, which for the sake of simplicity is not

presented here but in Appendix B.2.

Proposition 6. Let D be a compact subset of BV1(Rd) of paths that are not tree-like equivalent.

Let f be a continuous function (for the 1-variation norm) over this subset, i.e. a function of paths,

33



that maps paths to R. For every ε > 0, there exists a integer N and w ∈ RN such that for any

X ∈ D

|f(X)− w · SN (X)| ≤ ε. (31)

Remark. · denotes the usual scalar product. For a proof of this Proposition, the reader is refered

to Király and Oberhauser 2016. This theorem crucially motives the use of signatures in machine

learning: it states that any function that maps time series to the reals and is continuous can be

approached by a linear combination of the path’s signature coefficients.

2.3.4 Applications of the signature in machine learning

The signature transform is becoming an increasingly popular tool in the field of machine learning.

This is mainly due to its capacity to handle time series of different length, to its statistical capacity

to capture complex phenomena of dimensional correlation, to its ability to approach real functions

of paths (see Proposition 6) and also to its simple form when paths are linear or piecewise linear.

Indeed, as time series are samples from a possibly continuous stochastic process at given times,

they always are piecewise linear paths. To compute their signature, one can use the Proposition 4.

We give some examples of applications of the signature transform, but refer, for an exhaustive and

regularly updated overview of applications, to the website DataSig which centralizes information,

papers and upcoming events centered on the signature transform.

Yang, L. Jin, and M. Liu 2016 achieve state-of-the-art writer recognition on Chinese and English

handwritten text by using the signature transform. They first enhance a database of online col-

lected handwritten characters by dropping some parts, then compute signatures and finally classify

by using a deep convolutionnal neural network.

Fermanian 2019 applies the signature to a classification problem for sound (UrbanSound dataset,

Salamon, Jacoby, and Bello 2014), simple hand drawn objects (Quick!Draw dataset) and motion

sensor data (Motionsens dataset, Malekzadeh et al. 2018). This article also addresses the highly

important question of signature embedding, which is not discussed in this thesis. Paths are first

embedded (the article features comparisons between classification performances as a function of

embedding choice); signatures are then computed and used for classification with different algo-

rithms (Neural Networks, XG-Boost, Random Forest, Nearest Neighboors). On the MotionSens

dataset, the author for instance achieves 100 percent accuracy with XGBoost classification.

A.B. Kormilitzin et al. 2016 use the signature transform on medical data with very small sample

size (N = 28) to predict bipolar disorder. Gyurkó et al. 2013 use the signature to classify financial
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data streams.

Even if signatures have been mainly used for classification, some other applications exist. Ferma-

nian 2020 extends signature usage to a linear regression framework, providing theoretical results

and applications to weather prediction using Canadian weather data. We do not know of any work

combining GANs and Signatures except from Ni et al. 2020, which was published during our work

on the subject.

Recall the Kantorovich dual formulation of the optimal transport problem, which we described in

Problem (14): we want to solve the optimization problem

sup
Lip(f)≤1

EX∼µ
[
f(X)

]
− EY∼η

[
f(Y )

]
. (32)

By reducing the class of Lipschitz functions to the class of linear functions of norm less or equal

to 1 of the signature, i.e. by solving the problem

sup
L linear,|L|≤1

L
[
EµSM (X)− EνSM (X)

]
, (33)

where the X’s are paths in Rd, they achieve computation of a closed form of the Wasserstein

distance, and thus are able to train a WGAN without training the discriminator (since the explicit

formulation of W1 is known in their framework). Indeed, the solution to problem (33) is

Sig−W (M)
1 :=

∥∥EµSM (X)− EνSM (X)
∥∥
`2
. (34)

The WGAN empirical problem the network tries to solve thus collapses to

inf
θ∈Θ

1

n

∥∥∥∥∥∥
n∑
i=1

SM (X)−
n∑
i=1

SM
(
Gθ(Zi)

)∥∥∥∥∥∥
`2

, (35)

where the (Zi)i are a gaussian sample. This trick tremendously simplifies the WGAN problem

(16), since the discriminator is perfectly trained from the beginning. Note that the network does

not generate signatures: it uses the signatures of generated paths to approximate the Wasserstein

distance between the distributions of true and generated paths.

The authors use this framework for conditional time series generation. Starting from an initial

point in time, the network uses the past of the series and some Gaussian noise to generate one

further step in time, thus moving forward step by step by using previously generated values. The

generated samples are of high quality and outperform other time series generation methods based

on GANs and WGANs. However, we believe this method suffers from the high complexity of

35



the training algorithm and from the lack of analytical tractability of the approximation made in

Equation (33).
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3 Generating Paths Through GANs and Signatures

3.1 Inverting the Signature Through the Insertion Algorithm

Hambly and T. Lyons 2010 show that the signature characterizes its underlying path under certain

conditions; namely, a sufficient condition is that the path has a monotonic coordinate (also see

Appendix B.2). Necessary conditions can be found in this article. The problem of inverting a

signature, i.e. transforming a given signature into a path (while knowing its truncation order and

the dimension of the original path), which naturally follows from this property, has been recently

tackled by different articles.

3.1.1 An Overview of Existing Methods

Chang, Duffield, et al. 2017 provide a probabilistic approach to this problem, using large deviations

and building upon a probabilistic interpretation of the signature of a path. However, their inversion

technique only works for completly monotonic paths, i.e. paths that are monotonic in every

direction at every time. This makes it unpractical for applications to real data.

Kidger et al. 2019 use a neural network to approximate the underlying path of a given signature

S(X). For a given signature S(X) of a path X : [0, 1] → Rd truncated at order n, the authors

solve the minimization problem

arg min
Y :[0,1]→Rd

∥∥S(X)− S(Y )
∥∥

2

by purely computational means. The problem is not solved analytically: the loss function is

simply minimized by gradient descent enabled by backpropagation (which is supported by the

Python iisignature package) through a dense neural network. Results are shown in Figure 9. Even

though this technique is very effective (signature are inverted almost perfectly), it is extremely

costly and non-generic: for every signature one wishes to invert, a full neural network needs

to be trained. For instance, inverting the digit 3 shown in 9 took 113 seconds (as shown in the

GitHub repository that completes the article). Furthermore, it suffers from an absence of analytical

tractability and theoretical guarantees.

We focused on the technique introduced by Chang and T. Lyons 2019, which provides a generic

method to invert any given signature, provided that one knows the order at which it was taken

and the dimension of the underlying path.

The following subsection describes the inversion algorithm in detail. The general idea of the

algorithm is the following. Signatures of order n and n+ 1 are linked through the insertion of the
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Figure 9: Approximation of the underlying path of PenDigits signatures trucated at order 12
through a feedforward neural network with ReLu activation trained with backpropagation. True
digits are continuous lines, dotted line is the underlying path as reconstructed through signature
inversion. The network was trained during 5000 epoches. Source: Kidger et al. 2019.

derivatives of the path into a tensor product that is then integrated. To retrieve the derivate of

the path, one can solve a minimization problem that amounts to find a vector in Rd that will, once

inserted into the tensor product of the signature of order n, minimize the distance between this

modified signature and the signature at order n+ 1. For truncated signatures, this problem can be

written as a constrained minimization problem in finite dimension and can be solved using Lagrande

multipliers and Singular Value Decomposition (SVD). Solving this problem allows to retrieve the

derivatives of the path on different intervals and to reconstruct the path by integration.

3.1.2 The Insertion Operator

Consider a piece wise linear path γ : [0, 1] → Rd with bounded variations. Define the normalized

signature at order m as

S̄m(γ) := m! Sm.

We now define the insertion map Ip,n : Rd → Rdn+1

. It inserts a vector x into the normalized

signature at the spot p, i.e.

Ip,n(x) =

∫
0<u1<···<un<1

γ′(u1)⊗ · · · ⊗ γ′(up−1)⊗ x⊗ γ′(up)⊗ · · · ⊗ γ′(un)du1 . . . dun ∈ Rd
n+1

,

where ⊗ denotes the usual Kronecker product between vectors.

Proposition 7. Ip,n is linear and Lipschitz-continuous for any norm lp ( p > 0) on Rdm .

If inserted at the right spot in the signature of order n, one can expect that the obtained tensor

will approximate the signature of order n+ 1.

In fact, the following theorem asserts that the insertion application with parameters n, p, applied

to the derivative of the path a a given point, is a good approximation of the signature of order

n + 1. This theorem is crucial as it guarantees that we will be able to retrieve the derivative of

the path by finding the vector that minimizes the distance between the insertion operator and the
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signature at a order n+ 1.

Definition 12. We say a norm is proper if

1.
∥∥σ(v)

∥∥ =‖v‖ for all v ∈ Rd and for every permutation σ of the coordinates of v,

2. For all n,m ≥ 1, ‖v ⊗ w‖ =‖v‖‖w‖ for all v, w ∈ Rd.

Theorem 6. Let‖.‖ be a proper tensor norm. Assume γ : [0, 1]→ Rd is not tree-like, continuous,

of bounded variations and its derivative defined almost everywhere and of norm 1 at every time.

If γ is linear on ]s, t[⊂ [0, 1], and for θ ∈]s, t[, and p = bθ(n+ 2)c, then

∥∥Ip,n(γ′(θ))− S̄n+1

∥∥→ 0 as n→∞.

3.1.3 The Minimization Problem

Using Theorem 6, one can derive the minimization problem

arg min
‖x‖2=1

∥∥∥Ip,n(x)− S̄n+1
∥∥∥

2
(36)

to approximate γ′(θ). The constraint ensures that the path one recovers is parametrized at unit

speed, which is a requirement for 6 to hold. Note that this constraint is not convex, and one thus

cannot solve this problem by standard gradient descent. If the path is not parametrized at unit

speed, the authors show that one can equivalently solve the minimization problem

arg min
‖x‖2=1

∥∥∥LIp,n(x)− S̄n+1
∥∥∥

2
, (37)

where L is the length of the underlying path. It is conjectured by Chang, T. Lyons, and Ni 2018

that the length of the path can be approximated by n!‖Sn‖1/n. The implemented algorithm relies

on this conjecture (and provides good inversion results, as will be shown latter on).

Proposition 8. Problem (37) has at least one solution.

Proof. Since Ip,n is Lipschitz-continuous, one has for every x, y in Rd

∣∣∣∣∥∥∥LIp,n(x)− S̄n+1
∥∥∥−∥∥∥LIp,n(y)− S̄n+1

∥∥∥∣∣∣∣ ≤∥∥LIp,n(x)− LIp,n(y)
∥∥ ≤ K‖x− y‖ .

Thus the objectif function of (37) is continuous. The unit sphere of Rd is closed and bounded, and

the problem has at least one solution.
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3.1.4 An Algorithm for Signature Inversion

The inversion algorithm builds upon the solution to (37) the authors derive by using Lagrange

multipliers 3.

First, one can let A denote the matrix representing the linear application Ip,n in the canonical

basis of Rdn . To find an explicit solution to (37), one first needs the following Lemma.

Lemma. All the singular values of A are identical and equal to
∥∥S̄n∥∥

2
.

Proposition 9. Problem (37) has a unique solution.

We give two proofs of this statement. The first one is the one presented by Chang and T. Lyons

2019 in the original paper. The second one was found by Adeline Fermanian and greatly simplifies

the inversion of the signature, both from a theoretical and from a computational point of view.

Proof. Let b := S̄n+1, where we indentify S̄n+1 with a vector of Rdn+1

. By applying singular value

decomposition to matrix A (see Appendix B.4), one can write A = UΣV T , where U is orthogonal,

Σ is diagonal and V is orthogonal. Since

‖Ax− b‖2 =
∥∥∥ΣV Tx− UT b

∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



λq1 − y1

...

λqd − yd

−yd+1

...

−ydn+1



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

,

where λ :=
∥∥S̄n∥∥

2
, V Tx =


q1

...

qd

 and UT b =


y1

...

ydn+1

. The problem 37 is thus equivalent to

min
q∈Rd

d∑
i=1

(λqi − yi)2 subject to
d∑
i=1

q2
i = 1, (38)

since
∥∥V Tx∥∥

2
= ‖x‖2. Using Lagrange multipliers, one can solve this problem and get the

3This algorithm has been jointly designed, coded and tested with Adeline Fermanian, whom I shall thank once
again for her precious help. We both contributed equally to these tasks.
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solution

x∗ =
1
d∑
i=1

y2
i

V V T


y1

...

yd

 .

Proof. Problem (37) can be seen as a constrained version of the least-square problem, whose

solution is well known to be

x∗ =
(
ATA

)−1

AT b.

Projecting this solution onto the sphere
{
x ∈ Rd | ‖x‖ = 1

}
, one gets the solution

x∗ =

(
ATA

)−1
AT b∥∥∥(ATA)−1
AT b

∥∥∥ . (39)

However, since the matrix ATA is diagonal, this computation drastically simplifies to

x∗ =
AT b∥∥AT b∥∥ . (40)

In the first stages of our work, signature inversion was implemented through the steps of the first

proof in algorithm 3. The algorithm solves the optimization problem for every interval
[

p
n+2 ,

p+1
n+2

[
,

for p ∈ {0, . . . , n+ 2}, thus recovering the derivative on every interval, and finally integrates the

vectors to recreate the path.

However, this algorithm has an important computational bottleneck: the SVD decomposition is

quite costly and slows the algorithm down. The second proof allows for a much less costly inversion

through a straightforward algorithm that is not described here: one simply creates the matrices A

and b and computes the solution using any linear algebra library.

Note that this inversion algorithm does not recover the exact path for two reasons. First, it only

approximates the derivatives. Secondly, since the signature is invariant by translation, the starting

point of the path is lost when transforming into signature and cannot be recovered; furthermore,

the recovered path is always parametrized at unit speed, and will thus not have the same scale as

the original path.
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Using these algorithms allows for high quality path inversion. One can see some examples in Figure

10, which are commented in Section 4.1.

Algorithm 3 Inversion of a signature (the complicated way)

1: Inputs: S: full signature to invert; n: truncation order of S; d : dimension of the
underlying path; a: starting point of the reconstructed path.

2: Get Sn, the signature terms of order n.
3: L ← n!||Sn||1/n2 . Approximate path length
4: for p ∈ {1, . . . , n+ 1} do
5: for i ∈ {1, . . . , d} do A[di : di+1] ← Ip,n−1(ei)

6: U,Σ,VT ← SVD(LA) . Singular value decomposition
7: y ← UTSn[1 : d]
8: x∗p ← VT 1

||y||2 y

9: Integrate x∗p on
[

p
n+2 ,

p+1
n+2

[
10: Reconstruct path by concatenation, starting from a.

3.1.5 Limits of the Insertion Algorithm

Even though algorithm 3 provides very effective inversion, it is limited by the underlying depen-

dence between inversion precision and signature order. Indeed, when given a signature of order n,

the algorithm reconstructs the path through derivative approximation on n+ 1 intervals. Thus, if

one wants to reconstruct a Figure with high precision,i.e. by approximating the path’s derivative

on many intervals, one needs to use large signatures, which rapidly slows the algorithm down since

the size of the matrix A grows exponentially with the signature order (recall A is of size dn+1×d).
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4 Experimental Results

This section collects four different numerical experiments :

1. The first experiment simply consists in the inversion of some true signatures, including

Pendigits but also some geometrical figures.

2. In the second experiment, a WGAN is trained to learn a complex 2D density. This experiment

can be seen as a toy example to understand how a WGAN works and which parameters

significantly affect the generation results. It has no connections with signatures, but has been

a way for us to familiarize ourselves with deep learning, the PyTorch library and WGANs.

3. The third experiment dives into the experimental core idea of our thesis: generating artifical

signatures with a WGAN, and then inverting them to obtain artificial time series. To tackle

this difficult problem, we first start by trying our method on a simple toy example: we train

a WGAN to generate fake signatures of straight lines, which combine the advantages of being

simple objects and having a particular structure highlighted in Example 3.

4. Finally, we extend this procedure to the signatures of data coming from the PenDigits dataset

(created by Alimoglu and Alpaydin 1996) and design some metrics to asses the generating

performance of our WGAN. Experiments are designed in order to understand which param-

eters play an important role and significantly affect the generating performance, and which

others are less important.

4.1 Inverting True Signatures Through the Insertion Algorithm

The insertion algorithm, despite its weaknesses described in Section 3.1.5, performs well for invert-

ing signatures. It was tested on PenDigits and elementary geometrical Figures. One clear weakness

one can observe when inverting the signature of a sinusoidal curve is its inability to reproduce small

curvatures. Examples can be seen in the notebook provided on the GitHub repository; some are

displayed in Figure 10. One can observe that the signature captures some deep information about

the structure of the path, which is reconstituted by the insertion algorithm: looking at the inverted

8, one for instance sees that the algorithm adds points that are not present in the original digit

but are fully coherent with the structure.
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Figure 10: True (light blue) and inverted (dark blue) PenDigit.

Figure 11: 1000 samples from the true data (in blue) from Experiment 2. The red curve is the
function x 7→ sin(x).

4.2 Learning a 2D Density with a WGAN

4.2.1 Experimental Setup

The goal of this experiment is to learn a 2D density with a WGAN to get used to WGANs, PyTorch

and deep learning. No signatures are involved in this small experiment.

The WGAN tries to reconstruct the 2D density of a couple of random variables (X,Y ), where

X ∼ U [0, 9], and Y ∼ sin(X) + ε. ε is a Gaussian noise, of variance σ and mean 0. True data is

displayed in Figure 11. After training, the WGAN should be able to draw samples (i.e. points in

the plan) from this distribution that are indistinguishable from the true points.
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4.2.2 Some Results

As the experiment practitioner might surely know, an major problem when training WGANs

(and really any deep learning model) is the sheer abundances of hyper parameters one might tune,

making fine tuning an excruciating and difficult task. This is also a good reason, when trying to use

WGANs, to start with very simple settings, that allow to rule out some parameter configurations

that lead to aberrant generation results.

A first question that is natural to investigate is to check how much the training of the model

influences the results. The WGAN was trained for 1000, 2000, 5000, 10 000 and 20 000 iterations.

Note that as explained by Arjovsky, Chintala, and Bottou 2017, a WGAN is theoretically able to

learn indefinitely, even if the generator is perfectly trained. For this investigation, the WGAN was

trained with input noise size 3, gradient penalty parameter 1, 4 hidden layers of size 50 and Adam

optimizer with parameters set as in Gulrajani et al. 2017 (β1 = 0.5, β2 = 0.999, α = 0.0001). While

we did not see any significant improvement of the WGAN between 1000 and 2000 observations,

the generation process gradually starts to get better with 5000 iterations. 10 000 and 20 000

iterations both allow for highly resembling samples. Figure 12 shows some samples drawn from

the generator after different amounts of training: one can see that the generated points are more

and more diverse and fit the true density increasingly well.

Another parameter that seems of high importance at first glance is the size of what is usually the

latent space: it is the dimension of the vector space Rk in which the noise - the initial data fed into

the WGAN - lives. This noise, as said earlier, is usually drawn from a Gaussian distributions, even

if uniform and more exotic distributions are sometimes used. The WGAN was trained for 10 000

iterations and all other parameters identical, but for the input noise size, which was set to 1,3,5,10

and 50. The input noise size has an important influence on the data generation quality. While a

noise size set to 1 produces bad samples, results get very close to the original data for noise size

10 and 50 (one can see that the empirical CDF almost perfectly approximates the true CDF).

What did we learn from experimenting with this simple WGAN ?

• Trying to tune the parameters of the Adam algorithm, ore trying to use other optimizers

than Adam, is most of the time unsuccessful. When using Gradient Penalty (GP), one can

stick with the parameters given by Gulrajani et al. 2017.

• The size of the latent space plays an important role, but increasing it too much is unnecessary.

A latent space of dimension 1 produces bad generation results, but we seen little difference

between samples generated with noise size 10 and 50.

• While we did not extensively investigate the effects of the architecture of the generator and
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the discriminator on generation quality, we found that small, simple feed-forward networks

are able to generate high quality samples.

• As already suggested by some numerical experiments performed by Gérard Biau, Sangnier,

and Tanielian 2020, it is best to keep the generator and the discriminator symmetric (same

size, same activation functions). Some small tests performed with asymmetric networks

showed deteriorated generating performance.

Figure 12: True (blue) and fake (red) datapoints generated with a WGAN-GP trained for 1 000,
5 000, 10 000 and 20 000 iterations (from top to bottom).
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4.3 Generating Fake Straight Line Signatures

4.3.1 General Setup

In this experiment, we try to generalize our WGAN framework to generate signatures of straight

lines in three dimensions with random slopes using a WGAN with gradient penalty. The true

data consists in linear paths of length 5, in three dimensions, discretized over 10 points. The true

samples thus looks like


x1,1 . . . x1,10

x2,1 . . . x2,10

x3,1 . . . x3,10


and are transformed into signatures truncated at order 4 that thus have the shape

(
S(1), . . . , S(3,3,3,3)

)
∈ R120.

The slope, in every dimension, is drawn at random from a uniform distribution on [0, 1]. Signa-

tures are then computed for these paths at truncation order 4. For every training iteration of the

WGAN, new data is generated, consisting in 100 signatures of true paths. Both the generator and

the discriminator have 8 linear layers with Relu activation functions. Every layer has size 240, and

input noise has size 10. After training the WGAN for 6000 iterations, we generate some signatures

and invert them through the insertion algorithm.

4.3.2 Extrapolating Signatures

When generating signatures, it is hard to know if one has actually succeeded: how can one distin-

guish a signature from any other vector, and how can one tell how close the generated signature

is to an actual signature ? This fundamental problem is specific to our case: when generating

images, sound or text with a WGAN, one can rely on visual inspection of the generated samples to

asses the network’s quality. When generating abstract objects like signatures, such an inspection

is much more limited - one might detect if the network is completely missing its target, but will

not grasp small differences that become decisive when inverting the signature.

A special case in which one can easily know what the generated signature should look like is the

case of signatures of linear paths. As one can see in example 3, the signature of a three dimen-

sional linear path is fully determined by its three first coefficients. Indeed, if we consider a three
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Figure 13: Plot of a full fake signature of a linear path generated by a WGAN and of the signature
obtained by extrapolating its first coefficients.

dimensional linear path X : [0, 1]→ R3, meaning that

Xt = X0 + t


a1

a2

a3

 ,

the signature of the path can be immediately computed : for any word K = (i1, . . . , in), one has

SK(X) =
ai1 · · · ain

n!
. (41)

Thus, one can check for internal coherence of generated signatures by checking if the last

coefficients are coherent with the three first: if we suppose that the generated vector is indeed a

signature, then the three first coefficients should correspond to a1, a2 and a3 and all the following

coefficients should be in line with these coefficients in the sens of Equality (41). We call this

verification extrapolation of the signature. Note that this is generally impossible for non linear

paths. Figure 13 displays a comparison between a fake signature and its extrapolated counterpart,

generated by the aforementioned WGAN. The WGAN misses some of the spikes of the signature,

but globally generates a coherent sample.

Going further, we compute the L2-norm of the difference between the generated signature and

the extrapolated version of a sample of paths for every training iteration. We eventually average

this distance over multiple signatures. The computed extrapolation metric is thus equal to

1

K

K∑
i=1

∥∥∥SN,i − S̃N,i∥∥∥
2
, (42)
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Figure 14: Plot of the extrapolation measure described in equation (42) for K = 100.

where
(
SN,i

)
i
are generated full signatures (truncated at order N), and

(
S̃N,i

)
i
are the sig-

natures extrapolated from the first coefficients. Figure 14 displays the evolution of this quantity

during the training of WGAN. The obtained plot is hard to interpret: it does not show clear

convergence of the quantity towards a minimum, suggesting (1) that it does not capture well the

increasing performance of an improving WGAN (2) that the WGAN is not trained enough for us to

see a clear convergence of this metric. We favour the second interpretation of this graph: WGANs

notoriously require great amounts of training, which we were not able to do due to computational

limitations.

4.3.3 Results

One sees (Figure 22 in the Appendix) that a problem of our WGAN is that it fails to generate

the more spiking signatures; however, zooming in on the signatures that have a smaller amplitude

shows diverse generation at this scale. We see no evidence of mode collapse.

However, once inverted, these signatures do not generate perfect straight lines. This problem

is caused by bad generation performance of the WGAN: tests concluded that when given the

true signature of a straight line, the insertion algorithm is perfectly capable of reconstructing a

straight line. Some plots of inverted lines can be seen in Figure 21. Consistently with results of

the previous experiment, we found that the input noise size (the size of the latent space of the

generator) improves generation quality up to a certain point (we set it to be 10). We did not see

any improvement in performance beyond this noise size threshold.
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Figure 15: Some digits from the Pendigits dataset. Source: blogpost by F.X. Jallois.

4.4 Generating Fake Pendigits Signatures

4.4.1 The PenDigits dataset

The Pendigits dataset was created by Alimoglu and Alpaydin 1996. It is a multiclass classification

set containing handwritten digits with 16 attributs, split into 10 different classes (the integers

between 0 and 9). The set was created by asking 44 writers to write 250 random digits with a

stylet on a 500× 500 pixel screen. Every integer consists in a time series, i.e. a vector of position

(xi, yi) in R2 that is indexed by eight points time.

Some digits from the dataset can be seen in Figure 15. One should keep in mind that they

usually have a similar level of resemblance with actual digits throughout the whole dataset.

4.4.2 Evaluating the Performance of a Signature Generating WGAN

Evaluating performances of WGANs is a notoriously hard task. Metrics do exist, but are often

designed for one specific kind of data (Shmelkov, Schmid, and Alahari 2018), and as said early,

evaluating the performance of a signature generating WGAN is particularly hard. To evaluate the

performances of our WGANs, since we cannot rely on signature extrapolation anymore, we use

four different techniques.

First, as it is often done for evaluating WGANs, one can check for quality of generation by visually

inspecting the generated samples. In our case, we can inspect the generated signatures to check if

they approximately match the target signatures and are not completely off.
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Secondly, we check for convergence in mean of the generated signatures towards the true sig-

natures. More precisely, letting S̃N = ( ˜S(1), . . . , S̃(d,...,d)) be a generated signature, and SN =

(S(1) . . . , S(d,...,d)) be a true signature , consider a sample (S̃N,k)k of M generated signatures and

a sample (SN,k)k of M signatures of real Pendigits for a given class of integers. The quantity we

call the mean metric is equal

∥∥∥∥∥∥ 1

M

M∑
k=1

S̃N,k −
1

M

M∑
k=1

SN,k

∥∥∥∥∥∥
2

,

where the (S̃N,k)k’s and (SN,k)’s are sampled from the generator and the true data respectively.

This quantity measures the convergence in norm L1 of the random variable associated with the

generator (the output of this network) towards the true distribution of pendigits.

Thirdly, using the shuffle identity (Proposition 5), we derive a metric to evaluate the coherence

of generated signatures. Recall that the shuffle identity links two signature coefficients with the

signature coefficients of the words of their shuffle product: let I, J be two words from the alphabet

{1, . . . , d} of length n and m; one then has

SI(X)SJ(X) =
∑

K∈ItJ
SK(X) ∈ R. (43)

Formally, the metric we use is equal to

1

K

∑
Ik,Jk

SIk(X)SJk(X)−
∑

P∈IktJk

SP (X)

2

, (44)

where (Ik, Jk)1≤k≤K are multi-indices sampled randomly from all possible compatible multi-indices

that are used to compute the signature of the path. Compatible is here to be understood in the

following sens: the shuffle product of two words I, J of length m and n creates words of length

n+m; thus, to be able to compare the signature coefficients of words of the shuffle product with

the product SI(X)SJ(X), n+m must be lesser or equal to the truncation order of the signature.

This metric is then eventually averaged over multiple signatures. It evaluates the coherence of

generated signatures, as for real signatures, it is theoretically equal to zero (and very close to 0 in

practice due to numerical approximations).

Finally, we introduce a third party classifier that tries to classify the generated signatures after

being trained on true signatures. Fermanian 2019 uses random forests, nearest neighbors, neural

networks and XGBoost to classify signatures and to investigate how the classifier’s performances
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are affected by signature order and specific embeddings. Building upon this idea, we evaluate the

WGAN’s performance with following algorithms:

1. Logistic regression. A standard way to classify data is to use logistic regression. We imple-

ment this method with Lasso regularization. Data is centered using SKlearn StandartScaler

before training. The minimization problem is solved using L-BFGS. Maximum number of

iterations is set to 1000.

2. Random forest. This classification algorithm was initially proposed by [Breiman 2001].

Using SKlearn, we implement random forest classification with 50 estimators and maximum

depth 10.

3. Nearest neighbors. This popular non-linear classification method is implemented with 5

considered neighbors and using Minkowski distance.

4. Neural network. We build a neural network to classify generated signatures. The archi-

tecture of our network comes directly from [Fermanian 2019]: it consists of a dropout layer

with rate 0.5, followed by a layer with 64 neurons, a linear activation and a softmax output.

The network is trained with SGD (with learning rate set to 1) through 200 epochs with

mini-batch size 64. We choose cross entropy as loss function.

For every classification algorithm, training is done on 80 percent of the PenDigits dataset

(5995 observations): the algorithms learn to classify signatures of true pendigits. We evaluate

the algorithm on the 20 remaining percent (1499 observations) as a reference point. Following

this training, we compute the algorithm’s accuracy on 1500 samples of the WGAN trained on one

single digit: the algorithms are asked to classify the signatures we generate with the generator,

which are all signature of one digit. Thus the algorithms should classify all generated signatures

in one single class (if trained perfectly).

High accuracy of a well trained model on generated data suggests that the WGAN has learned to

generate features that resemble those of true data. Using different classification techniques allows

for a more precise picture of the WGAN’s perfomance.

A caveat we do not adress is sample redundance: the WGAN might generate similar samples that

artificially increase accuracy. For instance, if the WGAN was to generate only one identical copy

of an observation of the true data, its accuracy would be near 100 percents on most algorithms.

However, visual inspection of the generated signatures shows that the generated samples are diverse.

This is due to the use of a WGAN instead of a GAN, which is known to cause less mode collapse,

as explained for instance in Weng 2019.
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4.4.3 Experimental Setup and Evaluation

The goal of this numerical experiment is to generate fake Pendigit signatures with a WGAN-GP.

Our pipeline works as following:

1. Pendigits are normalized and signatures of a given order calculated using the Signatory

library.

2. The WGAN-GP is trained on true Pendigit signatures of one given integer. At each iteration,

the WGAN is trained on 100 true signatures.

3. After training, the generator should be able to create signatures of Pendigits. We invert the

created signature and inspect the results.

Different settings are tried to investigate the effects of hyperparameters, and to sort out which

parameters play an important role and which others are secondary. The settings are evaluated

through different metrics and classification algorithms.

4.4.4 Results

Figure 16 shows some Pendigits obtained by our generation process. Our results are numerically

documented in the Appendix C.

1. The first parameter of the network we examine is the number of training iterations. The

result of our experiments is globally consistent with what we found in earlier experiments:

the WGAN’s performance increases with training. Notice however that there might be some

moments in training where generation performance deteriorates significantly for a significant

amount of time: this might be due to the networks escaping a local extrema and transitioning

towards another one.

2. The second parameter we take a look upon is the gradient penalty parameter. The results

suggest that a too strong gradient penalty parameter penalises the ability of the WGAN to

generate samples that resemble the true signatures. Gulrajani et al. 2017, who initially intro-

duced WGANs with gradient penalty, do not give guidelines for tuning this hyperparameter

other that checking the quality of generated samples. In our case, classifier performance

drops as we increase the gradient penalty parameter, while setting it to 10 (which is in fact

the same value as in Gulrajani et al. 2017) seems to yield good results.

3. The last parameter whose effects were investigated is the size of the latent space. Interestingly,

this parameter seems to have a non linear effect: over a certain latent space size, the classifiers

performance decreases. The optimal noise size seems to be around 10.
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These experiments and many others we do not report lead us to formulate following suggestions

when training WGANs:

1. Use networks with a sufficient amount of layers. If generation is unsuccessful, try first to

increase the number and height of layers of the neural networks. Networks can remain simple

when generating signatures, but more sophisticated architectures, including convolutions,

should be explored. Activation functions should be kept to be ReLu.

2. Generator and discriminator should be kept symmetric. Alternated training (training the

discriminator k times for every generator step) is generally not a solution and should be used

only if one notices oscillations of the network’s performance metrics.

3. Try to train the network as much as possible. This might require great computational power

but significantly improves generation performance.

4. The Adam optimizer works well; one should keep the hyperparameters suggested by Gulrajani

et al. 2017.

5. Gradient Penalty greatly improves the performance of a network over clipping and other

brutal methods, but the tuning of the hyperparameter λ (that adjusts the importance of the

relaxed constraint) seems to little importance to us. One can check if the gradient’s norm

does indeed converge towards 1 as training goes on to ensure that the gradient penalty is

efficient.
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Figure 16: Zeros and ones obtained by generating signatures truncated at order 4 resp. 5 with a
WGAN with Gradient Penalty after 20000 training iterations. The network has 4 layers that are
two times the size of the signature vector high. Activation functions are ReLu, and optimization
is done with Adam.
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5 Conclusion

Starting from the observation that data generation is a key process of modern statistical models,

we built a pipeline combining a particular object from rough path theory, namely signatures, and

a distance coming from optimal transport theory, the Wasserstein distance, to build a signature

generating WGAN that tries to create fake time series. Results are modest, but we provide below

some ideas to explore.

Further research and developments. The short duration of this internship (3 months) and

my relative ignorance of deep learning made it impossible to explore the following ideas, which

could become subjects for further research:

1. Improving performance and computational efficiency of the insertion algorithm.

As mentioned earlier, the insertion algorithm mainly suffers from the direct link between

the order of the signature and the number of intervals on which the path’s derivative is

approximated. A great improvement of our method would be to break this link, making it

possible to approximate the path on many intervals while using low order signatures. Another

possible next step would simply be to optimize the insertion algorithm, for instance through

finding a more efficient way to solve the optimization problem.

2. Assessing WGAN performance through Wasserstein distance approximations.

Recent research has proposed some methods to approximate Wasserstein distances between

two distributions, most famously through Sinkorn’s Algorithm (see Cuturi 2013 and Chizat

et al. 2020 for instance). Assessing WGAN perfomance is difficult, since the network only

approximates the Wasserstein distance, but we cannot know how good this approximation is.

A possible improvement on our methods would be to use Sinkhorn’s algorithm to estimate

the true Wasserstein distance between the true and the generated distribution.

3. Partial signature generation. One may notice that the insertion algorithm only uses the

last terms of the signature to invert the path. Thus, if one wants to focus only on generating

fake time series through insertion, one could train a WGAN to generate only the last terms

of the signature.

4. Assessing WGAN performance through adapting existing metrics. As explained

earlier, different techniques have been designed to evaluate the performances of WGANs, but

are however designed for very specific dataypes. Adapting these measures to time series and

signatures would be a key step.
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5. Using other Wasserstein distances. Recent research (for instance H. Liu, Gu, and

Samaras 2019) suggests using alternative Wasserstein distances, such as W2 or Wp, for p ≥

1 in WGANs. Deshpande, Z. Zhang, and Schwing 2018 make use of the so-called sliced

Wasserstein distance within a generative model. These are settings that one could possibly

explore.

6. More complex network structures. One of the advantages of generating fake signatures

instead of fake paths is the simplicity of the neural network one can use (a FF-NN is well

suited for this task). However, using more complex networks such as LSTM networks or

convolutional networks might lead to interesting results. Injecting noise at intermediate

layers, as suggested by Goodfellow et al. 2014, could also increase generation perfomance.

7. Theoretical properties of Signature-WGANs. Theoretical properties of WGANs are

an active domain of research and very little is know on the matter, as noted by Gérard Biau,

Sangnier, and Tanielian 2020. The theoretical properties of a WGAN using signatures at an

input stage or latter on in the network are also to be investigated.

8. Signatures and time series. Numerous results, methods and measures for the analysis of

time series have been developed in the recent years (see the synthesis by Lütkepohl 2005).

A theoretical and empirical exploration of these tools - as, for instance, auto-correlation

measures, specific statistical tests and forecasting methods -, combined with signatures could

lead to interesting and stimulating results.

What I learned from this research internship. Having a background in pure mathematics

and social sciences, this internship was a great occasion to gain a better knowledge of machine

learning and related topics.

1. Improvement of coding skills. I tremendously improved my coding skills in Python,

especially in PyTorch, SKLearn and genereal project construction. I also had the occasion

to learn how to use the SSH-servers of the LPSM.

2. Deep learning. Before this internship, I had almost no knowledge of deep learning and

neural networks. Working on WGANs and GANs was a great opportunity to gain knowledge

of these topics.

3. Signatures, Statistics, Optimal Transport, Rough Path Theory. I gained a better

knowledge of Optimal Transport and statistics, which I was familiar with on a graduate

degree level, and discovered rough path theory and signatures, which I did not previously

know.
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4. Research in general. I learned numerous things about working as a researcher in Machine

Learning, especially as far a result presentation, scientific writing, communication and work

organization are concerned.
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A The Adam Optimization Algorithm

The Adam4 algorithm was first designed and described by Kingma and Ba 2014. It falls into

the broad category of gradient descent based optimization algorithms, but improves upon existing

techniques by combining two features of two subclasses of stochastic gradient descent algorithms.

Adam combines the advantages from adaptative gradient algorithms, that allow for some learning

rate variance between parameters (and is thus highly effective for sparse problems), but also draws

from root mean square propagation that allows for time varying learning rates. Ruder 2016 provides

an excellent overview of existing gradient descent algorithms, and how they relate one to another.

Adam is used to solve the stochastic optimization problem

min
θ

E
[
f(θ)

]
, (45)

where f is a scalar value function with parameters θ. The stochasticity of f comes from the

fact that it might, for instance, be evaluated on mini-batches of data. Let f1, . . . , fT denote

its realizations. Intuitively, Adam works by updating parameters through a momentum-based

second order estimation, adjusted through exponentially decaying bias correction. It requieres 4

hyperparameters: β1, β2 control the decacy rate of the bias correction for first and second moment

estimates respectively; α is the learning rate; ε is a small number that prevents division by 0 in

the implementation.

Let gt := ∇θft(θ). Adam works in three times. It first computes moving averages of the gradient’s

mean and variance through

mt = β1mt−1 + (1− β1)gt (46)

vt = β2vt−1 + (1− β2)g2
t . (47)

However, these estimates are biased. Thus, in a second time, the algorithm computes unbiased

estimates by computing

m̂t =
mt

1− βt1
(48)

v̂t =
mt

1− βt2
. (49)

4...which is not an acronym but is "derived from Adaptative Moment Estimation" as the authors write.
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It finally updates θt through

θt−1 = θt −
α√
v̂t + ε

m̂t. (50)

Kingma and Ba 2014 find that Adam outperforms numerous optimization algorithms on stan-

dart problems, as one can see in Figure 17. The authors also provide a theoretical upper bound

on regret.

Proposition 10. Assume that ft has gradients bounded, for L2 and L∞ norm, by G and G∞ for

all θ ∈ Rd. Assume furthermore that the distance for any two parameters generated by Adam is

bounded in L2 norm, i.e. ‖θn − θm‖2 ≤ D for all n,m. Finally, assume that the hyperparameters

satisfy β2
1√
β2
< 1 and let αt = α/

√
t, β1,t = β1λ

t−1. Adam achieves, for every t ≤ T , the following

bound on regret:

R(T ) ≤ D2

2α (1− β1)

d∑
i=1

√
T v̂T,i +

α (1 + β1)G∞

(1− β1)
√

1− β2(1− γ)2

d∑
i=1

∥∥g1:T,i

∥∥
2

+

d∑
i=1

D2
∞G∞

√
1− β2

2α (1− β1) (1− λ)2
.

Proof can be found in the original paper.

B Tools

B.1 Lexicographical order

Proposition 11. The set of words of length m from an arbitrary alphabet {1, . . . , d} can be

equipped with an order relation, called the lexicographical order.

Let a = (a1, . . . , am) and b = (b1, . . . , bm) be two words from the aformentioned alphabet. The

lexicographical order is established by comparing successively the components of the two words.

To check if a ≺ b, one thus first checks if a1 < b1. If these two letters are equal, one moves on to

checking if a2 < b2, and so forth. Let us make two remarks.

1. All words can be compared since the alphabet {1, . . . , d} is equipped with a total order. The

only case we may fail to establish if a ≺ b or b ≺ a is when all successive letter tests fail :

but this means that the two words are indeed equal letter by letter.

2. In mathematical terms, a ≺ b means that there exists 1 ≤ i ≤ m such that for all j < i,

aj = bj and ai < bi.
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Figure 17: Efficiency of Adam algorithm for training an MNIST classification network, compared to
other widely used algorithms. The trained network consists of two hidden layers with 1000 hidden
units and ReLu activation functions. It is trained with mini-batch size 128. Source: Kingma and
Ba 2014.

B.2 Tree-like paths

This section of the appendix states some mostly technical points that formalize the idea of tree-like

paths. Broadly speaking, a path is tree-like if it is a constant path up to certain operations.

Definition 13. A path X : [0, 1]→ Rd is said to be tree-like if there exists a continuous fonction

h : [0, 1]→ R+ such that h(0) = h(1) = 0 and such that for all 0 ≤ s ≤ t ≤ 1, one has

‖Xt −Xs‖ ≤ h(s) + h(t)− 2 inf
u∈[s,t]

h(u).

Definition 14. Two paths X,Y are said to be tree-like equivalent if X ∗
←−
Y is tree like, where

←−
Y t := Y1−t is the time reversed version of Y .

Remark. Some authors also call a path that is not tree-like a tree reduced path.

Theorem 7. Let X be a path of bounded variation. Then, the signature of X is unique up to

tree-like equivalence, meaning that S(X) = S(Y ) if and only if Y = X or Y and X are tree-like
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equivalent5.

One can also prove that a path that has at least one monotonic coordinate is not tree-like:

thus, such paths are uniquely determined by their signature. For more details and an extensive

discussion of this litterature, the reader is refered to Hambly and T. Lyons 2010.

B.3 Gluing Lemma

The gluing Lemma is an important tool to prove that the Wasserstein distance is, indeed, a distance.

Lemma. Let µ1, µ2, µ3 be three probability measures on Rd, and let (X1, X2) be an optimal

coupling of µ1 and µ2 and (Z2, Z3) be an optimal coupling of µ2 and µ3. There exists a collection

of random variables (Y1, Y2, Y3) such that law(Y1, Y2) = law(X1, X2) and law(Y2, Y3) = law(Z2, Z3).

B.4 SVD Decomposition

Singular Value Decomposition (SVD) is a key process used in the insertion algorithm. It can

be seen as a generalization of the spectral theorem (stating that all Hermitian matrices can be

diagonalized in R) to arbitrary matrices.

Theorem 8. Let M be a real matrix of size n×m. M can be written as

M = UΣV ∗, (51)

where U is a m ×m real unitary matrix, Σ is m × n real diagonal matrice whose coefficients

are all positive and V is a real unitary matrice of size n× n.

5One can define an equivalence relation through the tree-like equivalence relation. See Fermanian 2018 for further
explanations.

67



C Figure and Table Appendix

Figure 18: True (blue) and fake (red) empirical densities generated with a WGAN-GP trained for
5 000, 10 000 and 20 000 iterations (from top to bottom).
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Figure 19: True (blue) and fake (red) data points generated by a WGAN-GP trained for 10 000
iterations with input noise size 1,5,10 and 50 (from top to bottom).
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Figure 20: True (blue) and fake (red) CDFs generated by a WGAN-GP trained for 10 000 iterations
with input noise size 1,5,10 and 50 (first from left to right, then top to bottom).

Noise size Mean metric Shuffle metric
1 0.1513 8.2566e-05
3 0.0728 1.2859e-05
5 0.0595 1.9140e-05
10 0.1547 2.4517e-05
20 0.1436 1.5056e-05
50 0.0866 1.0134e-05

Table 1: Pendigits signature generating WGAN performance for different input noise sizes. The
shuffle metric is averaged over 100 signatures and 10 shuffle samples for every signature. Average
value of the shuffle metric for true signatures is 1.5e-05.
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Figure 21: Some 3D path generated by inverting generated signatures of straight lines.

Figure 22: Fake signatures of straight lines generated at order 4 by the WGAN.
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Noise size Logistic regression Random Forest Nearest neighbors Neural network
Reference 0.8939 0.9606 0.9352 0.8532
1 1 0.9033 1 0.9653
3 0.906 0.9373 0.9586 0.9393
5 0.9046 0.9066 0.9726 0.9026
10 0.9653 0.9153 0.9873 0.9793
20 0.9146 0.85 0.9546 0.9186
50 0.888 0.914 0.9646 0.932

Table 2: Accuracy of different classification techniques on signatures generated by the WGAN
with different input noise sizes.

Iterations Mean metric Shuffle metric
5000 0.051 1.6845e-05
10000 0.136 7.9328e-06
15000 0.114 1.0078e-05
20000 0.100 2.0538e-05

Table 3: Pendigits signature generating WGAN performance for different number of iterations.
The shuffle metric is averaged over 100 signatures and 10 shuffle samples for every signature.

Iterations Logistic regression Random Forest Nearest neighbors Neural network
Reference 0.8939 0.9606 0.9352 0.8532
5000 0.904 0.8133 0.9626 0.962
10000 0.922 0.7933 0.9606 0.946
15000 0.9406 0.7226 0.9826 0.8873
20000 0.9606 0.954 0.9733 0.972

Table 4: Accuracy of different classification techniques on signatures generated by the WGAN with
different number of iterations.

GP parameter Mean metric Shuffle metric
0.1 0.142 2.8094e-05
1 0.224 2.5568e-05
5 0.056 1.2615e-05
10 0.157 4.4115e-05
50 0.070 1.2768e-05
100 0.036 1.2830e-05

Table 5: Pendigits signature generating WGAN performance for different gradient penalty pa-
rameters. The shuffle metric is averaged over 100 signatures and 10 shuffle samples for every
signature.

Gradient Penalty Logistic regression Random Forest Nearest neighbors Neural network
Reference 0.8939 0.9606 0.9352 0.8532
0.1 0.9206 0.8493 0.9666 0.972
1 0.9873 0.9706 0.9913 0.984
5 0.9293 0.922 0.9806 0.9453
10 0.9946 0.9486 0.9893 0.9726
50 0.9393 0.7646 0.974 0.8986
100 0.9146 0.8693 0.9573 0.87

Table 6: Accuracy of different classification techniques on signatures generated by the WGAN
with different gradient penalty parameters.
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